How does accretion of planet-forming disks
influence stellar abundances?
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Motivation

 Fast drift of large dust causes enrichment at chemical species’ evaporation fronts

+ Refractories evaporate closer to the star than volatiles | Accretion of enriched material Evaporatm -0
- Greater enrichment and earlier accretion convective envelope / NN - Pebb
« Dust and gas is accreted onto the stellar convective envelope ﬂ/ SN -9 -‘
 Affects stellar abundances, accreted material is initially refractory-rich W N -
« Convective envelope shrinks over time ~ & -9
- Faster adaptation to accreted composition ® Highly refractory - -)
« Pressure bump created by a massive, gap-opening planet prevents accretion ® Moderately refractory
of large solids outside its orbit ® voiatic Planet blocks refractories
 Significantly diminishes their enrichment in the stellar envelope e No accretion of blocked material \
« Species gaseous at the planet’s location can still be accreted onto the star
« Observations of the HD106515 wide binary system of solar like stars reveal:
Unexpected abundance differences between the constituents ‘@ y _4
« HD106515A host a confirmed giant planet, HD106515B has no confirmed
planets

Can the HD106515 abundance differences be the result of planet formation?

Methods
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Results
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Bad model: Planet forms outside water ice line, oxygen not matched Better model: Planet forms inside water ice line, better fit for oxygen

| Q Late water enrichment
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Best model: Planetesimals only form outside water ice line Alternative: Inward migrating planet, no planetesimal formation

Conclusions

« A massive planet influences chemical abundances of the host star by trapping solids outside its orbit, most significantly for ice

e Observed HD106515 abundance differences can be explained with planet formation
» Detailed observations of stellar binaries can give clues about formation location
- Here: Formation inside water ice line, more efficient planetesimal formation around star without planet

« Models suggest that efficient planetesimal formation in the outer disk might hinder giant planet formation

https://huehn.page.link/ppvii
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